
Impact Analysis for Distributed Event-Based Systems

Daniel Popescu1∗ Joshua Garcia1 Kevin Bierhoff2 Nenad Medvidovic1

1Computer Science Department
University of Southern California

Los Angeles, CA 90089, USA
{dpopescu,joshuaga,neno}@usc.edu

2Two Sigma Investments
379 West Broadway

New York, NY 10012, USA
kevin.bierhoff@cs.cmu.edu

ABSTRACT
Distributed event-based (DEB) systems contain highly-de-
coupled components that interact by exchanging messages
via implicit invocation, thus allowing flexible system com-
position and adaptation. At the same time, these inherently
desirable properties render a DEB system more difficult to
understand and evolve since, in the absence of explicit de-
pendency information, an engineer has to assume that any
component in the system may potentially interact with, and
thus depend on, any other component. Software analysis
techniques that have been used successfully in traditional,
explicit invocation-based systems are of little use in this do-
main. In order to aid the understandability of, and assess
the impact of changes in, DEB systems, we propose Helios,
a technique that combines component-level (1) control-flow
and (2) state-based dependency analysis with system-level
(3) structural analysis to produce a complete and accurate
message dependence graph for a system. We have applied
Helios to applications constructed on top of four different
message-oriented middleware platforms. We summarize the
results of several such applications. We demonstrate that
Helios enables effective impact analysis and quantify its im-
provements over existing alternatives.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

Keywords
dependence analysis, distributed event-based systems, mes-
sage dependence graph, program analysis, impact analysis,
components

∗Current affiliation: Google Inc, 340 Main St, Los Angeles,
CA 90291, USA, popescu@google.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS 2012 Berlin, Germany
Copyright 2012 ACM 978-1-4503-1315-5 ...$10.00.

1. INTRODUCTION
In recent years, distributed event-based (DEB) systems

that have been developed using message-oriented middle-
ware (MOM) platforms have become widespread. The mar-
ket size for MOM licenses was about $1 billion in 2005 [8];
the market for all middleware licenses was nearly $16 billion
in 2009, and MOM were among the fastest growing middle-
ware platform types [5]. In DEB systems, a component does
not directly call other components via explicit references,
but instead implicitly invokes other components by publish-
ing messages. Software connectors, e.g., message buses or
brokers, then route these messages to the correct recipients.
Consequently, components in DEB systems are highly de-
coupled and allow highly scalable, easy-to-evolve, concur-
rent, distributed, heterogeneous applications. The event-
based software architectural style [33] is especially used in
user-interface software and in wide-area applications such as
financial markets, logistics, and sensor networks.

As successful software systems are typically maintained
for many years and changed constantly during their life-
times [17], software engineers need techniques that assist
them in investigating the impact of proposed changes. Chang-
ing a software system is typically a time-intensive, difficult,
and error-prone task. Field observations show that soft-
ware engineers spent 28% of their coding time proposing
changes and investigating the impact of the changes [16].
Some investigation tasks become so overwhelming that en-
gineers give up on implementing a given change request [15].
To assist software engineers, researchers have investigated
dependence-based impact analysis techniques [4, 6, 27, 34]
which show how changes to a code element affect other code
elements.

The impact of changes on DEB system components is
more difficult to analyze because components invoke each
other implicitly and therefore, by design, do not know the
consumers of the messages they publish. Lexical source
model extraction (LSME) is the only existing technique that
has been used for extracting implicit invocations from a DEB
system [25]. LSME allows developers to specify (1) regular
expression patterns for constructs of interest and (2) actions
that execute when a pattern is matched (e.g., to record infor-
mation or reject some matches). Although LSME enables an
engineer to quickly extract implicit invocations from source
code, it typically recovers implicit invocations that are im-
precise and incomplete.

Traditional dependence-based impact analysis techniques
such as program slicing techniques identify overly imprecise
dependencies from DEB systems since they focus on state-

ment-level dependencies that do not capture implicit invoca-
tions. In addition, experiments show that existing program
slicing techniques extract dependencies that are practically
incomprehensible because, for large programs, they often
contain over 100,000 low-level source code dependencies [4].
To enable more comprehensible analysis, our work intro-
duces the message dependence graph, which explicitly cap-
tures implicit invocations.

A message dependence graph captures two types of mes-
sage dependencies: (1) inter-component dependencies and
(2) intra-component dependencies. An inter-component de-
pendency describes how a component influences a receiver
component by publishing a certain message. Inter-compo-
nent dependencies by themselves are insufficient to deter-
mine change impact because two components might be de-
pendent on each other through a chain of message depen-
dencies. For example, Component A sends e1, which causes
Component B to send e2, which changes the state of Compo-
nent C; consequently the state of Component C is dependent
on e2 and e1. Intra-component dependencies fill the missing
link in causality chains. They describe how outgoing mes-
sages of a component are dependent on incoming messages
of the same component. These intra-component dependen-
cies are caused by a component’s internal control-flow and
its state.

We present Helios, a technique for determining message
dependence graphs. By slightly constraining the implemen-
tation of a DEB system, while retaining its adaptability
benefits, Helios creates the pre-requisites for the computa-
tion of inter- and intra-component dependencies. We call
a DEB application that follows these constraints Helios-
compliant because the application can be analyzed for event-
based change impact. A DEB application becomes Helios-
compliant if it follows Helios’s constraints:

1. Helios-compliant applications must use MOM platforms
that support a standard message sink interface and a
message source interface for each component, as well
as connectors that route messages from message source
interfaces to appropriate message sink interfaces. This
constraint is reasonable for many DEB systems [8].

2. Helios-compliant applications must use object-oriented
programming languages that support strong static typ-
ing and either reflection mechanisms or multiple dis-
patch (i.e., methods that can be dynamically dispatched
based on the runtime subtype of an argument of a
method) [7]. Many modern OO programming lan-
guages, such Java or C#, fulfill these requirements.

3. Helios-compliant applications use type-based filtering
in which message types are explicitly mapped to pro-
gramming language types, allowing type-safe commu-
nication between DEB components.

For Helios-compliant systems, Helios enables the calcula-
tion of intra-component dependencies through (1) compo-
nent variable access specifications [3] and (2) typing a com-
ponent’s incoming and outgoing interfaces. Helios calculates
intra-component dependencies by producing a component
call graph that is annotated with message types and ac-
cess permission information. It determines inter-component
dependencies based on the incoming and outgoing compo-
nent interfaces and the system’s overall structural configura-
tion [20]. Finally, inter- and intra-component dependencies

are merged to form a complete message dependence graph
on which an impact analysis algorithm can be executed.

We have evaluated Helios with existing DEB applications
that were written for four different MOM platforms. The
evaluated systems include an architecture-based modeling
and analysis environment [21], an arcade game [21], an emer-
gency response system [33], a stock ticker notification sys-
tem [23] and the jms2009-PS [30] benchmark that is based
on the official SPECJms2007 [29] benchmark for evaluating
the performance of enterprise MOM servers. For each sys-
tem we are able to demonstrate that Helios enables impact
analysis

The remainder of the paper is organized as follows. Sec-
tion 2 presents the background, including (1) the definitions
of the terminology used in this paper, (2) an overview of dif-
ferent types of dependencies in a DEB system, and (3) a dis-
cussion of the choices available to an engineer in constructing
a DEB system with an overview of the choices made in the
related literature. Section 3 describes the approach taken in
Helios, while Section 4 presents our evaluation results. The
paper concludes with a summary of lessons learned and a
discussion of future work.

2. BACKGROUND

2.1 Terminology
In distributed event-based (DEB) systems, components,

i.e., the units of computation and data, communicate using
messages which carry either notifications or anonymous re-
quests [24]. An event is an important occurrence of anything
that can be observed by a component (e.g., a change of a
component’s state). A notification is a datum that describes
an event, and an anonymous request is a directive that ex-
pects a reaction from an unknown recipient. A message is a
data container that conveys notifications and requests. Ad-
dition, removal, and updating of components during runtime
can be achieved with relative ease because components do
not have references to each other.

DEB components can be classified into two types, produc-
ers and consumers. A DEB component can assume both
roles simultaneously in a given system. Consumer compo-
nents can explicitly subscribe to messages that they intend
to process. When a producer publishes a message, a software
connector routes the message to the appropriate subscribers
based on the network configuration, routing policies, and
message filters. Message filters are Boolean functions that
check whether a component should process or publish a mes-
sage. The filtering mechanisms help to reduce message load
on the network by ensuring messages are only routed to the
designated consumers. A message source is a component’s
interface that a component invokes to publish messages, and
a message sink is a component’s interfaces that a connector
invokes to transfer a message to the component.

2.2 Classifying Message Dependencies
Figure 1 shows an example DEB system that will help to

illustrate the inherent challenges and solutions throughout
this paper. We will create a complete message dependence
graph by extracting three types of message dependencies.
(1) Intra-component dependencies resulting from control flow
are dependencies that occur due to an operation whose in-
vocation is caused by the receipt of a message at a compo-
nent’s message sink which, in turn, produces one or more

messages at the component’s message source. Component
A in Figure 1 depicts such a dependency: the intra-com-
ponent dependency of e3 on e0. (2) Intra-component depen-
dencies based on state are dependencies of the kind depicted
in Component C in Figure 1. The component variable in C
is written to by an operation executed as a result of e4. An-
other operation that reads that component variable executes
as a result of e3. (3) Inter-component dependencies that oc-
cur across connectors are dependencies of the kind depicted
in Figure 1 between the message source of A and the mes-
sage sink of C. By extracting these three different types of
dependencies, we construct a complete graph of message de-
pendencies.

A

C

e1

e6

e7

Component

Typed
Message Source

Typed
Message Sink

Component
Variable

Intra-Component
Dependency

Inter-Component
Dependency

e3e0
B

e2

e7

e8

e3

e4

e5 e8

Connector

Figure 1: Inter- and Intra-Component Dependencies

2.3 Categorizing Distributed Event-Based Sys-
tems

This section contains a discussion of design choices avail-
able to developers of DEB systems and the specific choices
we took to create applications that can be analyzed by He-
lios. Similar to the manner in which a statically typed pro-
gramming language facilitates static analyses that are hin-
dered by dynamically typed languages, design choices made
about the message-oriented middleware platform and DEB
application will facilitate or hamper the analysis of DEB
systems. The three key dimensions along which DEB sys-
tems differ are the employed (1) filtering mechanisms, (2)
communication styles, and (3) implementation languages.

In general, a DEB system needs a message filtering mech-
anism that prevents each component from having to pro-
cess every published message. A component’s message fil-
ter also reveals the component’s message sink and message
source interfaces since filters define what kind of messages

a component may consume and produce. Common filtering
mechanisms are (1) channels, (2) subject-based filtering, (3)
content-based filtering and (4) type-based filtering [24].

Message channels are a filtering mechanism in which each
component selects named channels for exchanging messages.
A component can only receive messages from pre-selected
channels. The disadvantage of channels is that a component
has an explicit reference to the channel and therefore cannot
be easily adapted to changing system configurations.

Subject-based filtering uses string matching to filter mes-
sages. In this filtering mechanism, each message is named
by a string. A subject-based filter can use regular expres-
sions to match messages, allowing complex message names
and naming hierarchies (e.g., “/Stock/Dow”). The benefit
of this filtering mechanism is that it is easy to implement
in any common programming language. However, subject-
based filtering hampers identifying message sink and mes-
sage source interfaces in a component’s code. Both interface
types need to be recovered from the subject-based filters and
the message names that the implementation generates.

Content-based filtering allows the most refined filters by
filtering over the whole content of a message. While it is a
powerful filtering mechanism, systems using content-based
filtering complicate dependence analysis because the content
of a message can be created in intractable ways.

Finally, type-based filtering uses explicitly defined types to
filter messages. In this filtering mechanism, message types
can be directly mapped to programming language types.
Consequently, type-based filtering enables type-safe commu-
nication between DEB components. Moreover, applications
that are based on subject-based filtering are often suitable
for adaptation to type-based filtering and, therefore, can
also benefit from Helios. Specifically, message names can be
transformed into programming language types, and naming
hierarchies lend themselves to type hierarchies. For these
reasons, we focus on analyzing dependencies based on typed
messages, typed message sinks, and typed message sources
in Helios.

Components in DEB systems can rely solely on exchang-
ing messages or they can utilize several communication styles
in tandem. However, mixing communication styles can de-
creases the benefits of each individual style [10]. Consider
the example in Figure 1. If Component A had an additional
explicit reference to Component C (e.g., a pointer), the sys-
tem’s adaptability would decrease because modifications to
Component C would likely affect the reference maintained
by Component A. Since the event-based style is typically
used to achieve loose coupling between components, Helios
focuses on systems in which components only communicate
through messages.

Finally, we surveyed the 18 MOM platforms covered in [24]
regarding the implementation language each one supports.
Statically typed OO programming languages, such as Java,
C#, and C++, are used in the widest number of MOM
platforms. In addition, the static typing of the languages
facilitates integrating type-based message filtering with an
application’s implementation language. Consequently, we
focus on mainstream OO programming languages in Helios.
In particular, our evaluation was performed on Java-based
middleware systems.

2.4 Related Work
A number of approaches for static and dynamic slicing

have been developed (e.g., [4, 31, 32]). When slicing, a user
has to specify a slicing criterion (P, V) in which P is a pro-
gram point and V is a subset of program variables. A back-
ward slice consists of the statements that could influence the
values of variables in V at program point P. A forward slice
consists of the statements that are affected by the slicing
criterion. For chopping, a user tries to identify the state-
ments that affect a given target element from a given source
element [28]. Since slices are used to determine the impact
of statements on other statements, slicing and chopping are
dependence-based analysis techniques.

Most static slicing approaches either compute data-flow
equations on a control-flow graph or compute a program
dependence graph (PDG) [4]. A PDG is a directed graph
in which the vertices correspond to statements and control
predicates and the edges correspond to data-flow or control
dependencies. The static slicing problem can be restated
as a graph reachability problem on a PDG. Initial slicing
approaches were not able to slice across procedure bound-
aries. To achieve inter-procedural slicing for data-flow-based
approaches, Krinke suggested tracking the calling context
of procedure calls [14]. To solve slicing across procedure
boundaries utilizing a PDG, Horwitz et. al. introduced the
system dependence graph (SDG) [12], which contains proce-
dure summary edges that help to address the calling-context
problem. Multiple researchers have since suggested how to
extend an SDG to account for object-oriented [18] and con-
currency [11] features.

None of the above code-based dependence analysis tech-
niques are able to separate message dependencies from other
source code dependencies. On the other end of the ab-
straction spectrum, there has been research in analyzing
event-based modeling approaches. Unfortunately, these ap-
proaches share another deficiency: they provide no guidance
for analyzing implementation-level event dependencies.

Stafford and Wolf [32] developed a dependence analysis
technique for Rapide, a modeling language that allows one
to specify and simulate the behavior of a DEB system. This
approach accounts for inter- and intra-component dependen-
cies, but fails to provide a mapping of the model to an imple-
mentation. Zhao introduced slicing for the software archi-
tecture modeling language Wright [35]. This technique is of
limited use in our proposed work since Wright explicitly cap-
tures several relationships between DEB components that a
programming language such as Java does not. Millett and
Teitelbaum introduced slicing of Promela models [22]. How-
ever, it is unclear how Promela’s channels could be mapped
to event-based implementations that do not use channels,
such as those of most current message-oriented middleware
systems [24].

Helios is not the only program analysis technique that has
been developed specifically for analyzing DEB systems. Ja-
yaram and Eugster developed static program analysis tech-
niques that improve the performance of DEB systems [13].
These analyses are devised specifically for the EventJava
framework [9], which includes an event-based programming
language and a compiler for that language.

3. APPROACH
In this section we describe how Helios creates a message

dependence graph from the source code of a DEB system.
The message dependence graph is needed to determine the
impact of changes in such a system. Before we discuss each
phase of Helios, we will first clarify the conditions that need
to be fulfilled to analyze message dependencies with Helios.
The conditions are based on the above discussion of design
choices: (1) the system is implemented in an OO program-
ming language, (2) the components comply to type-based
filtering, and (3) each message type is bijectively mapped to
a programming language type.

Whenever a connector wants to deliver a message to a
component, the connector dispatches the message to one of
the component’s message sinks based on the type of the
message. Figure 2 helps to clarify this mechanism. The fig-
ure shows a Java implementation of a simple Component
C. In this implementation, the consume methods realize the
component’s message sink and the publish method realizes
the component’s message source. The annotations, denoted
with @, will be explained in Section 3.2. The instance vari-
able in line 7 realizes the component’s state, while E1, E2, ...
E8 represent specific message types, which are subtypes of
the general message type EventMessage. Component C has
consume methods for message types E3, E4, and E5. When
the connector receives a message of one of those three types,
the message needs to be dispatched to the right consume

method. Mainstream OO languages such as Java, C++, or
C# cannot dispatch a method based on the runtime type of
a method parameter [7]. While Helios is able to incorporate
any solution to this problem discussed in [7], our analyzed
Helios-compliant applications all utilize explicit type tests:
each component inspects the runtime type of an incoming
message to decide whether it can process the message. When
the component is able to consume the message’s type, it ex-
plicitly casts the message to that type (Figure 2, lines 11-17).

As mentioned above, Helios assumes that DEB compo-
nents only communicate using messages. In our example and
in the later evaluation, we accomplish this communication
constraint by ensuring that no reference to the component
object escapes (i.e., is passed to) to other application ob-
jects or methods. The component object is the class instance
that implements the message sink, parts of the component’s
application-specific logic, and the interface to the message
source. Only the connector code can have a reference to a
component object. This constraint can be guaranteed using
static analysis [1].

Helios extracts a message dependence graph in three dis-
tinct phases, detailed in the remainder of this section and
depicted in Figure 3. Section 3.1 describes how Helios ex-
tracts message dependencies inside a component and com-
poses them into an intra-control-flow message dependence
graph (Figure 3a-c). Section 3.2 describes how annotating
data access with permissions facilitates determining data-
flow dependencies, which need to be added into the control-
flow-based message dependence graph (Figure 3d). Finally,
in Section 3.3 we describe how the intra-component mes-
sage dependencies can be merged into a complete message
dependence graph (Figure 3e). Throughout this section, we
will continue using the scenario depicted in Figure 1 and
Component C’s implementation depicted in Figure 2.

1 /∗Component C in Java∗/
2 @ClassStates ({
3 @State (name = ”counter ” ,
4 inv = ”share (counterObj) ”)})
5 @States (dim=”counter ”)
6 public class C extends Component{
7 Counter counterObj = new Counter () ;
8
9 /∗ generated method ∗/

10 @Share (”counter ”)
11 public void consume (EventMessage e){
12 i f (e instanceof E3){
13 consume ((E3) e) ; } ;
14 i f (e instanceof E4){
15 consume ((E4) e) ; } ;
16 i f (e instanceof E5){
17 consume ((E5) e) ; } ; }
18
19 @Pure (”counter ”)
20 public void consume (E3 e){
21 int i = counterObj . g e tS ta t e () ;
22 i f (i > 0) pub l i sh (new E6(i)) ; }
23
24 @Share (”counter ”)
25 public void consume (E4 e){
26 counterObj . increment () ;
27 m1() ; }
28
29 public void consume (E5 e){
30 m1 () ;
31 m2() ; }
32
33 private void m1(){ pub l i sh (new E7 ()) ; }
34
35 private void m2(){ pub l i sh (new E8 ()) ; }
36 }
37
38 class Counter{
39 @In(” a l i v e ”)
40 private int i = 0 ;
41
42 @Share (” a l i v e ”)
43 public void increment (){ i ++;}
44
45 @Pure (” a l i v e ”)
46 public int ge tSta t e (){ return i ;}
47 }
48
49 public class Component{
50 /∗Passes message to
51 i t s a t tached connector ∗/
52 public void pub l i sh (EventMessage e){
53 . . . }
54 . . .
55 }

Figure 2: Code of Component C in Java

3.1 Intra-Component Dependence Graph
This section shows how an intra-component dependence

graph can be created by extracting control-flow message de-
pendencies. To compute the intra-component message de-
pendencies, Helios analyzes and annotates the component’s
call graph, which captures the component’s methods and its
calling relationships.

For each method that implements the message sink inter-
face, Helios analyzes the type of the method’s message pa-
rameter, adds a node for the message type to the call graph
and also attaches an edge from the message node to the

consume consumeconsume

m1m2

e3 e4e5

(a) Adding typed message
sinks to a component’s
callgraph

e3 e4 e5

e6

e7 e8

consume consume consume

m1 m2

(b) Adding typed message
sources

e6 e7 e8

e3 e4 e5

(c) Compressing paths
between message
sinks and message
sources, by eliding
methods

e6 e7 e8

e3 e4 e5

counter

(d) Adding state-based
dependencies

Component CComponent A

e1e3

e0

e7e8

e2

e6 e7 e8

e3 e4 e5

counter

Component B

(e) Adding inter-component dependencies

Figure 3: Creating the Final Message Dependence
Graph

method node representing the message sink interface. Fig-
ure 3a shows the result of running these steps on the source
code of Component C. For example, the method consume(e4

e) in line 25 of Figure 2 is represented by the right-most node
labeled consume in Figure 3a. This node has an incoming
edge from a message type node e4 representing the method’s
parameter. Since consume(e4 e) calls the method m1, the
right-most node labeled consume also has an outgoing edge
to the method node representing m1.

As the next step, Helios determines all message sources of
the component. For each method m, Helios identifies whether
m calls the message source interface (i.e., whether m calls
publish(...)). In the case of a call to the message source,
Helios (1) determines the type of the argument that is passed
to the message source based on an intra-method data-flow
analysis, (2) adds a message node for the type to the call
graph, and (3) attaches an edge from the node representing
the method m to this message node. Figure 3b shows the
added message nodes (depicted by shaded ellipses) that have
been extracted from Component C’s source code.

Helios creates the final intra-component message depen-
dence graph by adding a directed edge for each existing path
between a message sink node and a message source node. To

find all paths, Helios performs a depth-first search on the
graph starting at the message nodes representing message
sinks (top of the graph in Figure 3b). At the end of this step,
Helios elides from the call graph all nodes and edges that de-
scribe calling relationships between methods.The generated
graph shows clearly the message-flow dependence relation-
ships of the component. Figure 3c depicts the result of this
step for Component C.

3.2 State-Based Dependencies
A component’s control-flow does not describe all poten-

tial dependencies between incoming and outgoing messages.
An outgoing message might depend on a component’s state
that is updated by a method invoked as a result of an incom-
ing message. In Figure 2 Component C’s state is captured
in the field counterObj, which captures the occurrences of
messages of type E4: whenever the component receives an E4

message, it increments the counter (Figure 2, line 26). At the
same time, whenever Component C receives an E3 message,
it reads the counter. Depending on the value of the counter,
Component C may publish an E6 message. Therefore, al-
though the message E6 does not depend on the control-flow
induced by E4, the shared state causes E6 to depend on the
occurrence of E4.

In order to check state-based dependencies we utilize Plu-
ral [3], our previously published static type system for OO
programs that is based on access permissions. Access per-
missions enable tracking typestates (richer notions of states
that are similar to statecharts) and aliasing information (ob-
jects being referenced from multiple locations). The ap-
proach is modular and has been proven sound (no false neg-
atives) for OO calculi [2]. In Plural, objects are seen as
transitioning through developer-defined abstract typestates
at runtime; methods perform these state transitions. While
permissions allow tracking of object references to determine
their typestate, permissions can also express whether a ref-
erence allows modifying or only reading access to the ref-
erenced object, which is what we are interested in for He-
lios. Plural supports independent state dimensions, which
Helios uses to track access to individual fields in a com-
ponent’s state separately. Therefore, two key features of
Plural are utilized in Helios: (1) programming-language an-
notations that specify individual fields or groups of fields as
one or more independent state dimensions and (2) program-
ming-language annotations that specify access permissions
a method has to these state dimensions. These annotations
must be performed manually by a developer during initial
implementation or during maintenance. Our previous anal-
ysis [3] has shown that the overhead of adding annotations
to applications is moderate, and our experience with the
application of Plural in the context of Helios confirms that.

In Helios, we annotate each method that accesses com-
ponent state with access permissions. For our example in
Figure 2 and our evaluation, we utilize a Java implementa-
tion of Plural, which allows developers to specify permissions
using Java 5 annotations on methods and classes. For ex-
ample, in Figure 2, we annotate the consume methods for
events E3 and E4 in Component C with access permissions.
@Pure signifies read-access, while @Share signifies read-write-
access. A calling method needs to own the permission that
the called method requires. For example, the method in-

crement() in the class Counter in Figure 2 requires that
the caller has at least also a @Share permission. As a conse-

quence, counterObj.increment(); (Figure 2, line 26) needs
also a @Share permission.

To track state access, Helios requires that all fields of the
component object are mapped into a state dimension. Multi-
ple related fields can be mapped into the same state dimen-
sion. Independent fields can be mapped into independent
state dimensions. An example state declaration is shown in
lines 3-5 of Figure 2. In this example, the dimension counter

is declared for Component C (line 5), and the component
will ensure the invariant of having a @Share permission on
the counterObj field (lines 3-4). In addition to the explic-
itly declared state dimensions, Plural assigns to each class
an implicit state called alive. This is the case with the
class Counter, allowing the field i to be mapped into this
default state (line 39). The mapping of a field into a state
enables Plural to check whether all methods accessing that
field have the appropriate access permissions. As a conse-
quence, in our example the method increment requires a
@Share permission because it modifies the value of the field
i, while the method getState requires a @Pure permission
because i remains unmodified.

The permissions annotations on the methods of the class
Counter require that the method callers provide fitting ac-
cess permissions. Since Component C is calling methods of
its field counterObj, Component C’s methods also need to
be annotated with access permissions. As discussed earlier,
only the method consume(E3 e) and consume(E4 e) access
Component C’s state. The method consume(E3 e) requires
read access to the state counter. As a consequence, the
method is annotated with @Pure("counter") (The parame-
ter reflects the name of the accessed state). The consume(E4

e) needs a write access permission: @Share("counter").
The methods consume(E5 e), m1 and m2 do not require ac-
cess to the state counter and therefore do not require an-
notations. Methods can carry more than one annotation if
they access fields from different dimensions, but we do not
need this feature in our simple example.

Plural can automatically check whether the permission an-
notations express the needed permissions of the code. A pro-
gram that passes Plural’s checking analysis is called permis-
sion-checked. Proofs and detailed descriptions of the access
permission tracking can be found in [2, 3].

After correctly annotating a component’s state with ac-
cess permissions, Helios can extract state-based intra-com-
ponent dependencies. The permission annotations on the
consume methods reveal whether an incoming message mod-
ifies a component’s state, reads from the state, or is inde-
pendent of it. Therefore, all state-based dependencies can
be determined by only inspecting the annotations on a com-
ponent’s consume methods.

Helios extracts the state-based dependencies in two steps.
First, for each state variable of the component, Helios adds
a state node to the intra-component message dependence
graph (depicted as a grey shaded rectangle in Figure 3d).
Second, Helios checks the access permissions of the com-
ponent’s consume methods. Whenever a consume method
requires a read-access permission (@Pure) to a state, Helios
adds an edge from the state node to the node represening the
consume method. Whenever a consume method requires a
read-write-access permission (@Share), Helios creates a bidi-
rectional edge between the node representing the consume

method and the state node.

After adding these edges and state-nodes, the intra-com-
ponent dependence graph includes all control-flow-based and
state-based dependencies between the messages. Figure 3d
shows the complete intra-component dependence graph of
Component C from Figure 2. Traversing the dependencies
of the depicted graph reveals the additional state-based mes-
sage dependency. Specifically, by starting the traversal at
the message node e4, we reach the message node e6 (via
the state-node counter and message-node e3). The added
path between the nodes e4 and e6 represents Component C’s
state-based dependency that could not be uncovered during
the extraction of control-flow message dependencies.

3.3 Inter-Component Dependencies
Intra-component dependencies help to understand how a

component reacts to a message and what messages a com-
ponent emits. A component’s reaction can either be a state
change or the emission of one or more messages. While intra-
component dependencies facilitate the understanding of a
component, they also enable more precise inter-component
dependence analyses. The intra-component analysis is able
to reveal that possible inter-component dependencies do not
manifest themselves because of extracted intra-component
dependencies, message sinks, and message sources. Intra-
and inter-component dependencies can be merged into a
message dependence graph that is able to show how changes
to a component’s message behavior impact other compo-
nents.

Helios creates an inter-component dependence graph by
matching the typed message sources of components with the
typed message sinks of other components. Since the intra-
component dependence analysis recovers the types of the
message sources, Helios generates an inter-component de-
pendence graph after all intra-component dependence graphs
have been generated.

Helios utilizes the structural configuration of the DEB sys-
tem to identify message sinks that could be reached from a
message source. The structural configuration describes how
components and connectors are connected to each other. In
some DEB systems components may be connected to multi-
ple connectors, while in other systems all components com-
municate through the same connector. For example, in Fig-
ure 1, if Component A’s message source were not connected
to the same connector as Component C’s message sink, the
depicted inter-component dependency would not exist. If a
system’s structural configuration is unavailable, Helios as-
sumes that all components can potentially exchange mes-
sages with each other. A message sink matches a message
source if both share the same connector and if the type of
the message sink is either the same type or a super type of
the message source’s type. For each found match, Helios cre-
ates a directed inter-component dependence edge from the
message source to the message sink. Figure 3e shows the
generated message dependence graph of the example sce-
nario from Figure 1. Note that there are no inter-component
dependencies involving Component B since no other compo-
nent generates events of type e2, which is the type of B’s
message sink.

4. EVALUATION
This section provides evidence that Helios reduces the ef-

fort required for maintenance engineers to conduct impact
analysis in DEB systems. A semi-automatic approach such

as Helios can help to identify components that are indepen-
dent of a particular source code change, allowing an engineer
to inspect fewer components. This potential effort reduction
is based on the precision of the dependence analysis, i.e.,
the degree to which extracted inter-component and intra-
component dependencies correspond to dependencies that
can actually occur in the DEB system at runtime. Helios
guarantees the extraction of all message dependencies from
a Helios-compliant system because (1) all message sinks are
explicitly defined, (2) its state-access analysis is based on our
sound (no false negatives) access permission analysis [2], and
(3) uses a sound call graph. However, Helios does not guar-
antee that there will be no spurious dependencies recovered
(i.e., false positives are possible).

We investigate the following research question: To what
extent does Helios extract fewer spurious message depen-
dencies compared to the message dependencies that are ex-
tracted by existing techniques? We have conducted these
comparisons on Helios-compliant DEB applications span-
ning four different MOM platforms.

We assessed the benefit of extracting intra-component de-
pendencies by comparing Helios’s analysis results with the
results achieved by LSME. Recall that LSME is the only pre-
viously existing technique that has been used to explicitly
extracts implicit invocations from the code of a DEB system.
Since LSME does not extract intra-component dependen-
cies, we assumed in our study that each message source was
dependent on each message sink within a component. This
assumption is safe because it ensures that LSME does not
miss any intra-component dependencies. Although LSME
typically extracts message source interfaces that are spuri-
ous and that are often incomplete, we assume the best-case
scenario for LSME — that it extracts no spurious message
interfaces and does not miss any actual message interfaces.

We describe the details of the evaluation next. Section 4.1
introduces five benchmark applications on which we per-
formed our analyses. Section 4.2 describes the empirical re-
sults that helped to evaluate the precision of Helios’s intra-
component dependence recovery.

4.1 Experimental Subjects
Table 1 gives an overview of the subject message-oriented

platforms and applications. Column Application Type gives
a short description of the application’s domain; SLOC shows
the source lines of code of each application; Components
shows how many component objects each application has;
Message Types totals the different message types in each ap-
plication; and MOM Platform names the middleware that
provides the connector services to the application. All ap-
plications have been developed independently of Helios, in
Java, and their architectures have been described in prior
publications [21, 23, 24, 30, 29, 33]. Initially, each appli-
cation utilized subject-based filtering as its main filtering
mechanism. Since DEB applications that employ the He-
lios approach must use type-based filtering, we converted
each string-based message type into a class-based message
type in Java. We should note that, in addition to modify-
ing our subject applications so that they all use type-based
filtering, we also had to annotate state dimensions of com-
ponents using Plural annotations. This required devising
a mapping between state dimensions and member variables
of the class(es) that constitute a component in the manner
introduced in [3]. Even though it was conducted manually,

Application Name Application Type SLOC Components Message Types MOM Platform

KLAX Arcade Game 4.5K 14 85 c2.fw [21]
DRADEL Architecture Modeling and Analy-

sis Environment
10.8K 8 82 c2.fw [21]

ERS Emergency Response 7.1K 11 56 Prism-MW [21]
Stoxx-Sub-system Stock Ticker Notification 1K 4 14 REBECA [23, 24]
jms2009-PS Standard Benchmark for JMS-

Providers
18.6K 4 19 JMS [30, 29]

Table 1: Studied Applications – Experimental Subjects

this process was accomplished relatively easily by a single
engineer.

We now briefly overview each application. KLAX is a
falling-tiles game. The original version was developed by
Atari Corp. We analyzed a version that was developed in
the event-based C2 style [21]. In KLAX, ADT components
capture the game’s state, game logic components compute
the next state of the game, and artist components compute
abstract graphical objects that are sent to a general graphics
component that is independent of KLAX. The next applica-
tion is DRADEL [21], which is an environment that supports
modeling, analysis, evolution, and implementation of C2-
style architectures. DRADEL can analyze an architectural
description and generate a skeleton implementation for that
architecture. KLAX and DRADEL are desktop applications
utilizing the c2.fw middleware platform. The Emergency Re-
sponse System (ERS) application was developed in Java on
top of the architectural middleware Prism-MW [19, 33]. The
application helps to deploy and organize human resources
during natural disasters. ERS is a distributed application
running on multiple PDAs and laptops. Stoxx is a stock
ticker notification system developed using the middleware
platform REBECA [23, 24]. Stoxx is able to monitor a stock
portfolio based on the stock quotes that it receives via the In-
ternet. As part of our evaluation, we analyzed the subsystem
of Stoxx that manages database connections and monitors
the minimum and maximum values of selected stock quotes.
The final application is jms2009-PS, a performance bench-
mark designed for JMS-based publish/subscribe application
servers [30, 29]. The benchmark jms2009-PS is built on top
of SPECjms2007, the first industry-standard benchmark for
evaluating the performance of enterprise message-oriented
middleware servers based on the Java Messaging Service
(JMS).1 The jms2009-PS benchmark application simulates
a distributed supply management system consisting of four
component types: Distribution Center, HeadQuarter, Su-
permarket and Supplier components.

We selected these subjects to cover a wide range of DEB
applications and to reduce domain-specific bias. The cho-
sen subjects have been developed for four different message-
oriented middleware platforms (see the MOM Platform col-
umn of Table 1) and they cover various domains such as
gaming, distributed systems, financial information systems,
supply management and enterprise systems (see the Appli-
cation Type column of Table 1).

1SPECjms2007 is a trademark of the Standard Perfor-
mance Evaluation Corporation (SPEC). The results or find-
ings in this publication have not been reviewed or ac-
cepted by SPEC, therefore no comparison nor performance
inference can be made against any published SPEC re-
sult. The official web site for SPECjms2007 is located at
http://www.spec.org/osg/jms2007.

4.2 Evaluation Results
Table 2 provides detailed results that shows how Helios

improves over LSME for each analyzed component. The
two Helios columns show how many intra-component de-
pendencies Helios extracts from the subject systems. The
two Improvement columns show the extent to which He-
lios extracts fewer spurious intra-component message depen-
dencies as compared to LSME. Both Helios and Improve-
ment have CF and CF+State columns. Column CF cap-
tures the control-flow-based intra-component dependencies
that Helios extracts from the subject systems, while column
CF+State captures the control-flow-based and state-based
intra-component dependencies extracted by Helios.

The data demonstrates that Helios reduces the number
of spurious intra-component dependencies in comparison to
LSME in a great majority of the cases. Figure 4 contains
two histograms that help to visualize the data. The data
in Figure 4a is based on Helios’s extracted control-flow and
state-based intra-component dependencies, while the data
in Figure 4b only considers Helios’s extracted control-flow-
based intra-component dependencies.

Helios achieves a median reduction of 33% for control-
flow-based and state-based intra-component dependencies.
If we set aside state-based dependencies, Helios achieves a
median dependency reduction of 71% over LSME. Figure 4
shows that components have mostly state-based intra-com-
ponent dependencies in many subject systems. Since in
such components most (sometimes all) message sinks can
affect most (sometimes all) message sources, Improvement:
CF+State tends to approach 0%. The sole responsibility
of a number of components in our subject systems was to
manage system state. This was the case, e.g., in KLAX’s
WellADT and ChuteADT, in which each incoming message
starts an operation that can access and modify the game’s
state and all outgoing messages notify the rest of the sys-
tem about state changes. Hence, every message sink can
affect every message source, which is precisely what LSME
assumes. Therefore, both LSME and Helios obtained the
highest possible precision for these components.

5. CONCLUSION
There is a rich body of work on analyzing the dependen-

cies and the impact of changes in traditional software sys-
tems, which rely on explicit invocations. This is not the case
with DEB systems, however. The sophistication of existing
program analysis techniques provides little benefit when ap-
plied to DEB systems, and engineers are left to rely on more
primitive aids such as generic lexical analysis tools used to
try to uncover message declarations.

In this paper we presented Helios, an analysis technique
that specifically targets DEB systems. Helios exploits the

Helios Improvement

Component
Msg
Sinks

Msg
Sources

LSME CF
CF+
State

CF
CF+
State

KLAX

ChuteArtist 3 4 12 7 8 41.67% 33.33%
ChuteADT 3 4 12 6 12 50.00% 0.00%
Clock 6 4 24 5 15 79.17% 37.50%
MatchLogic 2 5 10 5 10 50.00% 0.00%
NextTileLogic 2 3 6 4 4 33.33% 33.33%
PaletteArtist 5 7 35 8 23 77.14% 34.29%
PaletteADT 6 6 36 7 26 80.56% 27.78%
RelPosLogic 3 3 9 3 6 66.67% 33.33%
StatusArtist 5 7 35 9 18 74.29% 48.57%
StatusADT 3 2 6 3 5 50.00% 16.67%
StatusLogic 11 5 55 11 35 80.00% 36.36%
TileArtist 3 3 9 3 3 66.67% 66.67%
WellArtist 2 3 6 4 4 33.33% 33.33%
WellADT 8 7 56 14 56 75.00% 0.00%

DRADEL

ArchADT 19 74 1406 92 1043 93.46% 25.82%
ConstrCheck 2 2 4 2 4 50.00% 0.00%
CodeGen 4 2 8 2 8 75.00% 0.00%
Parser 3 27 81 28 58 65.43% 28.40%
Repository 7 4 28 8 28 71.43% 0.00%
TypeChecker 4 3 12 3 12 75.00% 0.00%
TypeMismatch 3 7 21 7 15 66.67% 28.57%
UserPalette 9 13 117 24 37 79.49% 68.38%

Stoxx-Subsystem

DBAbsLimit 4 5 20 5 8 75.00% 60.00%
DBPortfolioItm 4 3 12 5 5 58.33% 58.33%
DBRelLimit 3 3 9 3 4 66.67% 55.56%
QuoteMinMax 5 4 20 4 4 80.00% 80.00%

jms2009-PS

DistribCenter 7 8 56 8 8 85.71% 85.71%
Headquarter 5 3 15 3 3 80.00% 80.00%
Supermarket 7 4 28 4 4 85.71% 85.71%
Supplier 3 4 12 4 4 66.67% 66.67%

ERS

Clock 1 1 1 1 1 0.00% 0.00%
DeployAdvisor 2 2 4 2 3 50.00% 25.00%
Map 12 8 96 10 52 89.58% 45.83%
Repository 6 4 24 5 13 79.17% 45.83%
ResrcManager 8 5 40 9 36 77.50% 10.00%
ResrcMonitor 5 7 35 7 7 80.00% 80.00%
SimulatAgent 4 5 20 6 18 70.00% 10.00%
StrategyKB 9 4 36 4 21 88.89% 41.67%
StrategAnalyzer 2 3 6 3 6 50.00% 0.00%
Weather 3 3 9 3 7 66.67% 22.22%
WeathAnalyzer 2 2 4 2 2 50.00% 50.00%

Table 2: Results of extracting intra-component dependencies

0

2

4

6

8

10

12

14

<10% 10% ‐
<20%

20% ‐
<30%

30% ‐
<40%

40% ‐
<50%

50% ‐
<60%

60% ‐
<70%

70% ‐
<80%

80% ‐
<90%

90% ‐
<100%

N
um

be
r
of
 C
om

po
ne

nt
s

Improvement in %

(a) Including State-Based Dependencies

0

2

4

6

8

10

12

14

<10% 10% ‐
<20%

20% ‐
<30%

30% ‐
<40%

40% ‐
<50%

50% ‐
<60%

60% ‐
<70%

70% ‐
<80%

80% ‐
<90%

90% ‐
<100%

N
um

be
r
of
 C
om

po
ne

nt
s

Improvement in %

(b) Only Control Flow-Based Dependencies

Figure 4: Helios’s Improvement over LSME

characteristics of such systems to uncover and combine both
intra- and inter-component dependencies. While Helios re-
quires DEB applications to satisfy certain conditions (the
most important being type-based filtering of messages) and
imposes some additional burden on the engineer (specifically,
in annotating components for state variable access permis-
sions), the resulting benefits are significant. Our studies
have demonstrated that Helios can yield large savings in
the effort required to understand and assess the impact of
changes to a DEB application.

While our results to date are indicative of Helios’s bene-
fits, more empirical data with different applications can fur-
ther increase the confidence in Helios’s utility. We continue
to actively search for such applications. However, our ex-
perience strongly indicates that, unlike traditional software
systems and even message-oriented middleware platforms, of
which many are freely available, DEB applications tend to
be closely guarded by their owners. Other avenues of future
work include assessing Helios’s applicability to DEB applica-
tions that use filtering mechanisms beyond type-based. Our
work with the applications detailed in the previous section
suggests that expanding Helios to subject-based message fil-
tering systems would be relatively easy, as message strings
can be converted to programming language types. A big-
ger challenge will be incorporating content-based filtering
systems into Helios. Finally, an interesting opportunity is
presented by DEB systems that also in part rely on explicit
invocation: We hypothesize that, in such systems, Helios
can be used effectively in tandem with existing code analy-
sis techniques.

6. ACKNOWLEDGMENTS
This work has been supported in part by the National

Science Foundation under award number 1117593.

7. REFERENCES
[1] J. Aldrich. Using types to enforce architectural

structure. In IEEE/IFIP WICSA, 2008.

[2] K. Bierhoff and J. Aldrich. Modular typestate
checking of aliased objects. In Proc. OOPSLA ’07,
pages 301–320, 2007.

[3] K. Bierhoff, N. Beckman, and J. Aldrich. Practical api
protocol checking with access permissions. In Proc of
ECOOP, 2009.

[4] D. Binkley and M. Harman. A survey of empirical
results on program slicing. Advances in Computers:
Advances in Software Engineering, 62:105, 2004.

[5] F. Biscotti, T. Jones, and A. Raina. Market Share:
AIM and Portal Software, Worldwide, 2009. Gartner
market research report, April 2010.

[6] S. Bohner and R. Arnold. Software Change Impact
Analysis. Wiley-IEEE Computer Society Pr, 1996.

[7] C. Clifton et al. MultiJava: Design rationale, compiler
implementation, and applications. ACM Trans. Prog.
Lang. Syst., 28(3), May 2006.

[8] J. Correira and F. Biscotti. Market Share: AIM and
Portal Software, Worldwide, 2005. Gartner market
research report, June 2006.

[9] P. Eugster and K. Jayaram. Eventjava: An extension
of java for event correlation. ECOOP
2009–Object-Oriented Programming, pages 570–594,
2009.

[10] J. Garcia et al. Toward a catalogue of architectural
bad smells. In QoSA ’09: Proc. 5th Int’l Conf. on
Quality of Software Architectures, 2009.

[11] D. Giffhorn and C. Hammer. An evaluation of slicing
algorithms for concurrent programs. In Proc. SCAM,
2007.

[12] S. Horwitz et al. Interprocedural slicing using
dependence graphs. In Proc. PLDI ’88, pages 35–46.
ACM, 1988.

[13] K. Jayaram and P. Eugster. Program analysis for
event-based distributed systems. In Proceedings of the
5th ACM International Conference on Distributed
Event-based System, pages 113–124. ACM, 2011.

[14] J. Krinke. Evaluating context-sensitive slicing and
chopping. In Proceedings. International Conference on
Software Maintenance, 2002., pages 22–31, 2002.

[15] T. D. LaToza, D. Garlan, J. D. Herbsleb, and B. A.
Myers. Program comprehension as fact finding. In
ACM SIGSOFT ESEC-FSE. ACM, 2007.

[16] T. D. LaToza and B. A. Myers. Developers ask
reachability questions. In Proc of ICSE, May 2010.

[17] M. M. Lehman. On understanding laws, evolution, and
conservation in the large-program life cycle. Journal of
Systems and Software, 1:213 – 221, 1979-1980.

[18] D. Liang and M. Harrold. Slicing objects using system
dependence graphs. In Proc. ICSM, 1998.

[19] S. Malek et al. A style-aware architectural middleware
for resource-constrained, distributed systems. IEEE
TSE, pages 256–272, 2005.

[20] N. Medvidovic et al. A language and environment for
architecture-based softwaredevelopment and evolution.
In Proc. 21st ICSE, pages 44–53, 1999.

[21] N. Medvidovic et al. The role of middleware in
architecture-based software development. Int. J. of
Softw. Eng. and Knowl. Eng., 13(4), 2003.

[22] L. Millett and T. Teitelbaum. Issues in slicing
PROMELA and its applications to model checking,
protocol understanding, and simulation. Int. J. on
Software Tools for Technology Transfer, 2(4):343–349,
2000.

[23] G. Mühl. Large-scale content-based publish/subscribe
systems. PhD thesis, Darmstadt University of
Technology, 2002.

[24] G. Mühl et al. Distributed Event-Based Systems.
Springer-Verlag New York, Inc., 2006.

[25] G. C. Murphy and D. Notkin. Lightweight lexical
source model extraction. ACM TOSEM, 5(3):262–292,
1996.

[26] D. Popescu. Impact analysis for event-based
components and systems. In Proc. of ICSE, volume 2,
2010.

[27] V. Rajlich. A model for change propagation based on
graph rewriting. In ICSM, page 84. Published by the
IEEE Computer Society, 1997.

[28] T. Reps and G. Rosay. Precise interprocedural
chopping. In ACM SIGSOFT FSE, 1995.

[29] K. Sachs et al. Performance evaluation of
message-oriented middleware using the SPECjms2007
benchmark. Performance Evaluation, 66(8):410–434,
2009.

[30] K. Sachs et al. Benchmarking publish/subscribe-based
messaging systems. In Proc. BenchmarX, 2010.

[31] M. Sherriff and L. Williams. Empirical software
change impact analysis using singular value
decomposition. In ICST ’08, 2008.

[32] J. Stafford and A. Wolf. Architecture-level dependence
analysis for software systems. Int. J. of Softw. Eng.
and Knowl. Eng., 2001.

[33] R. Taylor et al. Software Architecture: Foundations,
Theory, and Practice. John Wiley & Sons, 2008.

[34] F. Tip. A survey of program slicing techniques.
Journal of programming languages, 3(3):121–189, 1995.

[35] J. Zhao et al. Change impact analysis to support
architectural evolution. J. Software Maintenance and
Evolution Research and Practice, 14(5), 2002.

