
ABSTRACT
The architectural style used in a software system is an important
factor in satisfying its quality requirements. In battery-powered
environments, such as mobile and pervasive systems, efficiency
with respect to energy consumption is often an important quality
requirement. In this paper, we present a framework that facilitates
early estimation of the energy consumption induced by an
architectural style in a distributed system, and enables an engineer
to use energy consumption estimates along with other quality
attributes in determining the most appropriate style for a given
distributed application. We apply the framework to three
architectural styles, and evaluate it for precision and accuracy
using a middleware platform that supports the implementation of
those styles. In a large number of application scenarios, our
framework exhibited excellent precision, in that it was consistently
able to correctly rank the styles and estimate the relative
differences in their energy costs. Moreover, the framework has
also proven to be accurate: its estimates were within 7% of each
style implementation’s actual energy cost.
Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures
General Terms
Design, Measurement

1. INTRODUCTION 
A promising approach to addressing the challenges of

developing distributed, mobile, and pervasive systems is to
employ the principles of software architecture [9,12]. Software
architecture provides abstractions for representing the
structure, behavior, and key properties of a software system
[20]. These abstractions include software components
(computational elements), connectors (interaction elements),
and configurations (specific assemblies of components and
connectors). Architectural styles (e.g., publish-subscribe, peer-

to-peer, client-server) are key design idioms which further
refine the vocabulary of components and connectors and
propose constraints on how they may be integrated.

Architectural decisions made early in the design process
are critical to successful development of a distributed system.
In particular, selecting an appropriate architectural style has a
significant impact on system quality attributes (e.g., latency,
scalability, reliability, etc.). Energy efficiency is increasingly
being defined as an important quality attribute for mobile and
pervasive applications. However, there are currently no
techniques for analyzing the impact of an architectural style on
a system’s energy consumption. In fact, unlike other quality
attributes, such as those mentioned above, a style’s energy
consumption characteristics are not understood even in an
informal and intuitive manner. In this paper, we address this
problem via a framework that estimates the impact of a
system’s architectural style on the system’s energy
consumption. The framework is intended to be used during
architectural design and enables an engineer to use energy
consumption estimates, along with other quality attributes, in
determining the most appropriate style for an application.

Figure 1 depicts the process and key artifacts employed by
the framework. The framework defines a method to derive
platform- and application-independent equations that
characterize a style’s energy consumption behavior. We refer
to the equations for a given style as that style’s energy cost
model. Comparing the models of different styles yields insights
into the essential differences between the energy costs induced
by each style. We have derived the energy cost models for five
architectural styles: client-server, peer-to-peer, C2, publish-
subscribe (pub-sub), and pipe-and-filter[18]. For brevity, this paper
shows the derivation of only the client-server and pub-sub styles.
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The framework also defines a process for applying any
style’s energy cost model to a given distributed system design,
prior to system implementation. As we demonstrate, this is
accomplished by gathering basic information about the target
platform and the system design, and plugging these parameters
into the energy cost model. We refer to an energy cost model
that has been parameterized in this way as a energy prediction
model. Energy prediction models enable scenario-specific
comparisons of the energy costs of different styles, enabling
architects to weigh trade-offs and determine the circumstances
under which one style will be more efficient than another. We
have created energy prediction models for four different distributed
systems. For each system, we chose a set of candidate styles that
were appropriate for the system, derived the energy prediction
model for each candidate style, and evaluated the framework’s
accuracy and precision under multiple execution scenarios.

In a recent short paper [17], we outlined the overview of
our approach. This paper provides a detailed explanation of the
framework and presents the evaluation results. In a large
number of experiments, our framework exhibited excellent
precision, in that it was correctly able to determine the
scenarios under which one style is more efficient than another,
and estimate the relative differences in their energy costs. The
framework also proved to be accurate: it consistently produced
energy consumption estimates that differed from the actual
measured energy costs by at most 7%.

This paper is organized as follows: Section 2 describes
how our framework defines energy cost models and derives the
energy cost models for the client-server and pub-sub styles.
Section 3 discusses how energy cost models can be applied to a
distributed system, and applies the pub-sub energy cost model
to an example application. We present evaluation results in
Section 4. Section 5 describes related research, and Section 6
concludes the paper.

2. ENERGY COST MODELS
Fielding [2] and Mehta [13] identified more than twenty

architectural styles for distributed systems. In this section, we
first show a uniform way to derive a style’s energy cost model,
which is a symbolic expression that represents the energy cost
induced by using the style. Then, we illustrate the approach by
deriving the energy cost models for the client-server and pub-
sub styles, which embody a diverse set of distributed systems
characteristics, such as distribution, concurrency, and so on.
The derivation of other styles is given in [18].

2.1 Generic Energy Cost Model
As it is common in power modeling of operating systems

[10, 23], our energy cost model consists of multiple linear
equations. We model the energy consumed by a distributed
system as the sum of the energy consumed by its constituent n
components and m connectors, as shown in Equation 1.

The energy cost of a component Compi can be expressed as
shown in Equation 2. In this equation, Elogic,i is the
computational energy cost of the component Compi due to

executing its core business logic, while EcommWithConn,i
represents the energy cost of exchanging data via connectors.

In this work, we assume that a component’s core business
logic remains the same for all styles. We acknowledge that this
logic may need to be refactored in some cases. For example,
the logic required by a component to manage its interfaces
might differ among styles. We account for these differences in
EcommWithConn,i of Equation 2. This implies that the
computational energy cost of a component (i.e., Elogic,i in
Equation 2) remains the same across all candidate styles, so
our framework does not require the actual value of Elogic,i to
compare the energy consumption of multiple styles.

Similarly, the energy consumption of a connector Connj
can be expressed as in Equation 3.

Ecomm,j represents the energy consumption of
communication, which includes the cost of exchanging data
both locally or remotely. We can calculate Ecomm,j as shown in
Equation 4. EcommWithComp,j represents the energy consumed
by exchanging data with components, while EremoteComm,j and
ElocalComm,j are the energy costs of exchanging data with
remote and local connectors, respectively. The above
formulation assumes that components and connectors run as
separate processes and the energy consumed by one component
or connector is not dependent on the energy consumed by other
components and connectors. As a consequence, our energy
cost model is most accurate for systems where computing
resources (such as processor time and memory) are abundant
and are assigned “fairly” among all processes. Equation 4 also
assumes that component-connector interactions are supported
by an Inter-Process Communication (IPC) mechanism, which
incurs energy overhead in both the component and connector
[23]. If that is not the case, then the value of either
EcommWithConn,i from Equation 2 or EcommWithComp,j from
Equation 4 would be zero.

Equation 5 shows how to determine Elogic,j, which is the
energy cost of services (other than communication) that a
connector may provide [14]: 
• Coordination – Transfer of control among components.
• Conversion – Adaptation of interfaces or data provided by

one component to that required by another.
• Facilitation – Mediation and streamlining of interaction.

By combining the above equations, we arrive at the generic
energy cost model given in Equation 6. The parameters in
Equation 6 vary according to style. In the following
subsections, we illustrate how we can create style-specific
energy cost models for the client-server and pub-sub styles by
refining these parameters.
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2.2 Client-Server Energy Cost Model
To refine the

energy cost
parameters introduced
in our generic energy
cost model shown in
Equation 6, we
characterize the
communication,
coordination,
conversion, and
facilitation required
by the client-server
style. Figure 2 shows an example of a distributed system
designed in the client-server style. Connectors in this style are
commonly implemented as middleware stubs and skeletons.
The client-server style behaves as follows:

Component Communication: Clients send requests to and
receive responses from client connectors. Servers exchange
requests and responses with server connectors.

Connector Communication: Client connectors receive
requests from clients and forward them to the appropriate
server connector, and receive responses from server connectors
and return them to clients. Server connectors receive and
buffer requests from client connectors and forward them to
servers, and receive responses from servers and return them to
client connectors.

Connector Coordination: Connectors transfer execution
control by passing requests and responses to clients and
servers.

Connector Conversion: Connectors marshal/unmarshal
requests and responses.

Connector Facilitation: Connectors create and manage
connection objects that implement remote communication.

Equation 7 shows the energy cost EcommWithConn,i of a
client Compi due to sending requests to and receiving
responses from a connector. ai is the total number of requests
made by the client. EtoConn,k and EfromConn,k represent the
energy costs due to sending the kth request to and receiving its
response from the connector, respectively. EcommWithConn,i of a
server Compi can be calculated in the same manner using
Equation 7. The values of EtoConn and EfromConn depend on the
platform-specific communication mechanism used between the
relevant component and connector. For example, if a queue is
used, the values of EtoConn and EfromConn are constant; on the
other hand, if IPC is used, they are directly proportional to the
size of exchanged data [23]. We show how these values can be
determined for a given platform in Section 3.

The energy cost EcommWithComp,j of a client connector
Connj incurred by receiving requests from and forwarding
responses to clients can be calculated using Eq. 8. bj is the total
number of requests received from clients, while EfromComp,l
and EtoComp,l represent the energy costs due to receiving the lth
request and sending the lth response. We can also calculate
EcommWithComp,j for a server connector Connj using Equation 8.

Again, the values of EfromComp and EtoComp depend on the
platform-specific communication mechanism used.

Data exchange between client and server connectors may
be either local (if they reside on the same host) or remote, and
we handle each case differently. Due to space constraints, we
only show how to model remote communication here. The
local case is given in [18]. To model the energy consumption
due to remote exchange of data between client and server
connectors, we assume that the total energy cost is
proportional to the size of the exchanged data. This has been
shown to be a highly accurate characterization for commonly
used network protocols, such as UDP [1]. Based on this,
EremoteComm,j of a client connector Connj due to sending cj
requests and receiving responses can be estimated as shown in
Eq. 9. tSizel and rSizel are the sizes (e.g., KB) of the lth
transmitted request and its response. tEC and rEC are the
energy costs (Joule/byte) of transmitting and receiving a unit
of data, respectively. tS and rS represent constant energy
overheads associated with channel acquisition [1]. All of these
values can be easily measured for a given implementation
platform, as we demonstrate in Section 3.

Similarly, we can calculate EremoteComm,j of server
connector Connj using Eq. 10. dj is the total number of requests
received over the network, and rSizel and tSizel are the sizes of
the lth received request and its responses, respectively. Ebuffer,l
is the energy cost of buffering the lth received request.

In the client-server style, the cost Ecoordin,j due to
coordination is not modeled separately because connectors
transfer execution control by passing requests and responses,
whose energy cost is already captured by  EcommWithComp,j.

The conversion cost Econver,j of a client connector can be
quantified as in Equation 11. cj is the number of requests sent
remotely, while Emar,l and Eunmar,l are the energy costs of
marshalling the lth request and unmarshalling its response,
respectively. The conversion cost Econv,j of a server connector
can be calculated in the same manner.

The facilitation cost Efacil,j of client and server connectors
is calculated with Equation 12. EremoteConn and ElocalConn are
the energy costs due to establishing a single remote or local
connection, respectively. NumremoteConns,j and NumlocalConns,j
are the numbers of remote and local connections established,
respectively.

By substituting Equations 7 - 12 into the generic energy
cost model in Equation 6, we arrive at the client-server energy

Figure 2. A distributed client-
server architecture.
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cost model (omitted here due to space constraints). Note that
the energy cost parameters (e.g., EtoConn, EfromComp, tEC, etc.)
introduced in this section are platform-specific, i.e., their
values depend on the hardware, OS, and middleware on which
an application is deployed. We elaborate on how these
parameters are determined for an actual platform in Section 3.

2.3 Pub-Sub Energy Cost Model
The pub-sub style reduces coupling by providing

transparency and anonymity of component identities and
locations. Figure 3 shows an example of a distributed system
designed using the pub-sub style. A component in the pub-sub
style may be a publisher, a subscriber, or both. Pub-sub
constructs have the following characteristics:

Component Communication: Subscribers declare the
events they wish to receive by sending subscription requests to
a pub-sub connector. They then asynchronously receive the
published events of interest from the pub-sub connector. In
addition, subscribers can send unsubscription requests to stop
receiving certain events. On the other hand, publishers may
continuously and asynchronously publish events by
transmitting them to a pub-sub connector. 

Connector
Communication: Pub-sub
connectors receive and
buffer subscriptions from
both subscribers as well as
other, potentially remote,
connectors. Pub-sub
connectors also forward
subscriptions to other
connectors so that they may
update their subscription
tables. In addition, pub-sub
connectors receive and
buffer events from
publishers and other
connectors. They also
forward events to subscribers
and other connectors.

Connector Coordination: Pub-sub connectors provide
time decoupling among subscribers and publishers by
queueing events, so that they can be delivered later.

Connector Conversion: Pub-sub connectors marshal and
unmarshal events that are transmitted remotely.

Connector Facilitation: Pub-sub connectors (1) manage
subscriptions and publications, (2) find the set of subscriptions
that match each published event, and (3) create connection
objects that implement remote communication.

Based on the above characterization, we can first calculate
the energy cost EcommWithConn,i of a component Compi due to
exchanging subscriptions, unsubscriptions, and events with
pub-sub connectors as follows:

ai is the total number of events published by the
component, and bi represents the total number of events
received by the component. EtoConn,k is the energy cost of

sending the kth event to a pub-sub connector, while EfromConn,l
is the energy cost of receiving the lth event from a connector.
ci and di are the numbers of subscriptions and unsubscriptions
sent by the component. Esubs,m and Eunsubs,n are the energy
costs incurred by sending the mth subscription and nth
unsubscription to the pub-sub connector.

The energy cost EcommWithComp,j of a pub-sub connector
Connj incurred by exchanging subscriptions and events with
components can be calculated as follows:

ej is the total number of events received from components,
while fj is the total number of events sent to components.
EfromComp,k and ErecBuffer,k are the energy costs of receiving the
kth event from a components and buffering it, while EtoComp,l
is the energy consumption of forwarding the lth event to all
subscribers of that event. gj and hj are the numbers of
subscriptions and unsubscriptions received from components.
ErSubs,m and ErUnsubs,n are the energy costs incurred by
receiving the mth subscription and nth unsubscription, whereas
EsubBuffer,m and EunsubBuffer,n are the energy costs of buffering
the mth subscription and nth unsubscription, respectively.

The energy cost EremoteComm,j of a pub-sub connector
caused by sending/receiving subscriptions and events to/from
remote connectors can be estimated as follows:

pj is the total number of events received over the network,
rj is the total number of subscriptions received and tj is the
total number of unsubscriptions received. qj is the total number
of events sent over the network, whereas sj is the total number
of subscriptions and uj is the total number of unsubscriptions.
rSizek, rSubSizem and rUnsubSizeo are the sizes of the kth
event, mth subscription and oth unsubscription, respectively.
Ebuffer,k, ESubBuffer,m and EUnsubBuffer,o are the energy costs of
buffering the kth event, mth subscription and oth
unsubscription. tSizel, tSubSizen and tUnsubSizep are the sizes
of the lth event, nth subscription and pth unsubscription sent
over the network. Other parameters are the same in as Eq. 9.

Figure 3. A distributed 
publish-subscribe architecture.
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We can calculate ElocalComm,j of a pub-sub connector due
to exchanging subscriptions, unsubscriptions, and events with
local pub-sub connectors as follows:

pj, rj and tj are the total numbers of events, subscriptions
and unsubscriptions received from local pub-sub connectors,
respectively. qj, sj and uj represent the total numbers of events,
subscriptions and unsubscriptions sent to local connectors,
respectively. ElocalReceiv,k, ElocalSubReceiv,m and
ElocalUnsubReceiv,o are the costs of receiving the kth event, mth
subscription and oth unsubscription. Ebuffer,k, EsubBuffer,m and
EunsubBuffer,o are the energy costs of buffering the kth event, lth
subscription and oth unsubscription. ElocalTrans,l,
ElocalSubTrans,n and ElocalUnsubTrans,p are the energy costs of
sending the lth event, nth subscription and pth unsubscription
to local pub-sub connectors, respectively.

The energy cost Ecoordin,j of a pub-sub connector incurred
by performing coordination can be calculated as follows:

xj is the total number of events received by the connector, and
Equeue,k represents the energy cost due to queueing the kth event.

The conversion cost Econver,j can be calculated as follows:

pj, qj and rj are the total numbers of events, subscriptions and
unsubscriptions to be unmarshalled, whereas sj, tj and uj are the
total numbers of events, subscriptions and unsubscriptions to be
marshalled, respectively. Eunmar,k, EunmarSub,l and EunmarUnsub,m
are the energy costs of unmarshalling the kth event, lth subscrip-
tion and mth unsubscription, respectively. Emar,n, EmarSub,o and
EmarUnsub,p represent the energy costs of marshalling the nth event,
oth subscription, and pth unsubscription, respectively.

Finally, the facilitation cost Efacili,j of a pub-sub connector is:

xj is the total number of events received by the connector,
whereas yj and zj are the total numbers of subscriptions and
unsubscriptions received by the connector, respectively.
Eroute,k is the energy cost of retrieving the set of subscribers for
the kth event from a subscription database. EprocSubs,m and
EprocUnsubs,n represent the energy consumption of processing
the mth subscription and nth unsubscription, respectively. The
other parameters are the same as those in Equation 12. 

As in the case of the client-server style, the additional
energy cost parameters (e.g., Esubs, Eunsubs, EprocSubs, etc.)
introduced in this section are platform-specific. We discuss
how they are determined for an actual platform in Section 3.

2.4 Style-Induced Energy Trade-Offs
To compare the energy costs induced by architectural

styles, and illuminate their fundamental differences, we derive
the algebraic difference between their energy cost models. For
example, by subtracting the equation representing the total
energy cost of the pub-sub style from that of the client-server
style, a number of terms cancel out, leaving terms representing
the costs of connector communication and facilitation.
Inspection of these terms clearly reveals that the number of
messages exchanged in the two styles is different, and the pub-
sub style incurs a facilitation cost that is not present in the
client-server style. The intuition behind this result is that the
client-server style is based on a point-to-point interaction
between components, while the pub-sub style may route
messages more efficiently. Therefore, if a message is intended
to be received from a remote host by multiple components
running on one host, the client-server style in principle
requires each message to be transmitted to each recipient
component separately. On the other hand, the same could be
achieved in the pub-sub style with only one transmission of the
message. In this case, it is reasonable to expect the remote
communication energy cost of client and server connectors
(i.e., EremoteComm of Equations 9 and 10) to be larger than that
of pub-sub connectors (i.e., EremoteComm of Equation 15).
However, in general, pub-sub connectors incur a higher
facilitation energy cost (i.e., Efacil of Equation 19) than client
and server connectors (i.e., Efacil of Equation 12) because the
pub-sub style has the additional overhead of managing
subscriptions and retrieving them for each published event.

Therefore, through the systematic determination of energy
cost parameters, as outlined above, it becomes immediately
clear that the energy trade-off between the client-server and
pub-sub style is dominated by two factors: (1) the number of
separate messages exchanged remotely and (2) the facilitation
overhead of a pub-sub connector. In other words, a client-
server application consumes more energy than the same
application implemented in the pub-sub style only if the energy
cost of exchanging additional messages is larger than the
facilitation cost of the connectors in pub-sub, and vice versa.

This type of comparison can be conducted for arbitrary
architectural styles whose energy costs have been modeled
using the process described in this paper. An important
contribution of our framework is that it allows architects to
intuitively understand the energy trade-offs between different
styles based solely on the style-induced characteristics, and
irrespective of the implementation platform.

3. ENERGY PREDICTION MODELS
The energy cost models given in Section 2 provide a

symbolic representation for the energy cost induced by the
architectural style of a distributed system. However, the actual
energy consumption induced by various styles is dependent on
several platform-specific and application-specific properties.
In this section, we show how to apply the energy cost model
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for an architectural style to a distributed system by creating a
specific energy prediction model. To derive an energy
prediction model, the following information is necessary:
1. Platform-specific energy cost model parameters must be

determined through mapping the energy cost model
parameters to the target implementation platform and
measuring their actual costs. These parameters include the
cost of transmitting data over a network and the cost of
performing lookups in routing tables. The process for
performing this task is explained in Section 3.1.

2. Application-specific energy cost model parameters must
be determined from the system design. These parameters
include the system’s components, connectors, their
configuration, sizes of exchanged messages, etc. The process
for gathering these parameters is detailed in Section 3.2.

Note that determining the values of the above sets of
parameters only requires access to the target platform and
basic application design information, and does not require the
actual implementation of the application. This allows our
framework to be used by architects early in the design process.

3.1 Platform-Specific Model Parameters
To determine the energy costs represented by platform-

specific parameters in an energy cost model, we characterize
these costs in terms of interfaces provided by the underlying
platform. This process consists of two steps: (1) mapping each
platform-specific parameter to interface(s) of the underlying
platform that incur that cost, and (2) measuring with a digital
multimeter the actual energy consumed when those interfaces
are invoked. We have mapped energy cost models to three
different platforms: Prism-MW [12], Java RMI [6] and TAO
[16]. Due to space constraints, here we only describe the
mapping for the pub-sub energy cost model onto Prism-MW.
The process for other styles and platforms is analogous, and
the details of these other mappings are given in [18].

Prism-MW, a lightweight, component-based middleware
platform, is an appropriate demonstration and evaluation
platform for our framework for two reasons: (1) it is intended
for resource-constrained and mobile systems, to which our
work is directly relevant; and (2) it supports for numerous
architectural styles [12], giving us a common platform to
evaluate the framework’s utility. Prism-MW provides
programming language-level constructs that directly
correspond to and implement software architecture-level
concepts such as components, connectors, topologies, and
ports. In general, there are many ways of implementing an
interface; in Prism-MW, the invocation of an interface
corresponds to an event being passed to the handle method of
one of the Prism-MW constructs. Therefore, we map the
energy cost model parameters for the pub-sub style to the
Prism-MW platform in the following way:
• The parameters Esubs, Eunsubs, EprocSubs and EprocUnsubs

(of Eq. 13 and 19) are incurred when a pub-sub connector
handles a subscribe or unsubscribe event.

• The parameters Eroute, EtoConn, EfromComp and ErecBuffer
(of Eq. 13, 14, 15 and 19) are incurred when a pub-sub
connector handles a published event.

• The parameters EfromConn and EtoComp (of Eq. 14) are
incurred when a component handles an event.

• The parameters Emar and Eunmar (of Eq. 18) are incurred
when a Prism-MW port handles an event that must be
transmitted over the network. A Prism-MW port is a duct
for a software connector [12]. Therefore, its energy cost is
aggregated with that of the associated connector.

Once cost
model
parameters
have been
mapped to
interfaces of
the target
platform, it is
necessary to measure the actual energy cost of invoking each
interface, using the measurement setup shown in Figure 4. A
benchmarking application invokes each interface with different
input parameter values and measures the current drawn from a
power supply. We then apply multiple regression to the values
recorded by the benchmark application to estimate the
relationship between the input variables and the energy
consumed. This relationship depends on the target platform.
As one target platform, we used a Compaq iPAQ 3800 mobile
device running embedded Linux with a 206MHz Intel
StrongARM processor, 64MB memory, and 11Mbps 802.11b
compatible wireless PCMCIA card. We chose a version of
Prism-MW that runs on top of the JamVM 1.4.5 [7], which is a
lightweight Java Virtual Machine. The iPAQ device was
connected to a 5V DC power supply and HP 3458 digital
multimeter. The multimeter sampled the current drawn by the
iPAQ at a high frequency. A data collection computer
controlled the multimeter and recorded the current samples.
Table 1 summarizes the measured energy consumption values.

Once platform-specific parameter values have been
obtained, the remaining undefined values in the energy cost
model are application-specific parameters. The next section
describes how to extract this information from a system design
to create a completely parameterized energy prediction model.

3.2 Application-Specific Model Parameters
Energy cost models contain parameters related to the

number and size of messages exchanged between components.
Also, whether messages are transmitted locally or over a
network has a major impact on energy use. Determining these
application-specific parameters requires extracting the
following information from the system design:

Prism-MW Interface Energy Cost 
Model Parameters

Average 
Measured 
Value (mJ)

Connector.handle(Subcribe) Esubs + EprocSubs 24.1

Connector.handle(Unsubscribe) Eunsubs + EprocUnsubs 18.1

Connector.handle(Publication) Eroute + EtoConn + 
EfromComp + ErecBuffer

72.9

Component.handle(Publication) EfromConn + EtoComp 40.9

Port.handle(LocalEvent) Emar + EremoteComm 15.0 +
2.8*eventSize

Port.handle(RemoteEvent) Eunmar + EremoteComm 12.0+
2.6*eventSize

Figure 4. Measurement setup.
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• The system components, connectors, and configuration
• The deployment architecture, which is the allocation of

the components and connectors to hardware hosts
• Sizes of messages exchanged between components
• A set of destination components for each message

To illustrate how to derive an energy prediction model,
given the above information, consider the sensor application
shown in Figure 5. The application was designed using two
architectural styles: client-server and pub-sub. The
FireAlarmReceiver component on Gateway 1 translates and
aggregates alarms received from fire detection sensors
periodically, and propagates them to the FireAlarmAnalyzer on
the Hub. Additionally, these alarms are logged by the
AlarmLogger. The FireAlarmAnalyzer interprets the alarm
data to determine whether there is actually a fire. If the
FireAlarmAnalyzer concludes that there is a fire, it transmits a
sensor-activation message to the FireAlarmReceiver, which in
turn sends an activation signal to all fire sensors. An analogous
processing path takes place in the intrusion detection sensors,
IntrusionAlarmReceiver, and IntrusionAlarmAnalyzer.

In the client-server architecture, the Receiver components
act as clients and invoke interfaces on the Analyzer and Logger
via their local connectors. The client connectors on Gateways 1
and 2 transmit requests received from local Receiver
components to the Analyzer and Logger separately, which
indicates that each alarm requires two remote transmissions.
On the other hand, in the pub-sub architecture, the Analyzer
components subscribe to fire or intrusion alarm events, and the
AlarmLogger subscribes to both event types. When the
FireAlarmReceiver publishes a fire alarm event, the pub-sub
connector retrieves the event’s subscribers (i.e.,
FireAlarmAnalyzer and AlarmLogger) and routes the event to
them, which requires only one transmission from Gateway 1.

Thus, to create an energy prediction model for the pub-sub
instance of the above application, an architect characterizes the
system in the following way:
• 5 components and 3 pub-sub connectors  run on 3 hosts.
• The types of messages are fire alarm, intrusion alarm, fire

sensor activation, intrusion sensor activation, and
subscription request.

• The destination components for a fire alarm message are
FireAlarmAnalyzer and AlarmLogger, while an intrusion
alarm message has the destinations of
IntrusisonAlarmAnalyzer and AlarmLogger. The

destination of a fire sensor activation message is the
FireAlarmReceiver, whereas an intrusion sensor
activation has the IntrusionAlarmReceiver destination.

3.3 Style-Induced Energy Trade-Offs
Instantiating a style’s energy cost model with platform-

specific and application-specific energy cost model parameters
leads to an energy prediction model that can be used to
estimate the relative differences between styles with respect to
energy consumption. For example, in the sensor application
scenario, the energy cost incurred on the Gateway by the
occurrence of a fire alarm event (in mJ) is given in Equations
20 (for the pub-sub style) and 21 (for the client-server style).

Thus, given rough estimates of the sizes of the various
events in the scenario, an architect can determine which style
is more efficient. For example, if we assume the sizes of all
application events to be 9 KB, the cost of each fire alarm is
112.62 mJ for pub-sub and 177.15 mJ for client-server. If we
assume subscription and connection setup (i.e., facilitation) to
be one-time costs, over time the pub-sub architecture would be
approximately 37% more efficient. More generally, an
architect can easily vary any of the parameters in the model —
hosts, components, messages sizes, etc. — and investigate
which style is most efficient in different situations.

4. EVALUATION
This section presents our framework evaluation. To check

the accuracy of our framework’s estimates, we measured the
actual energy costs induced by the architectural styles for our
application scenarios and compared these values to energy
consumption predictions made by our framework.

We evaluated our framework using four applications: the
sensor application described in Section 3.2, a mobile sales
application, a search-and-rescue coordination application, and
an XML data streaming application. For each application, we
used our framework to estimate the energy consumed on each
host and calculated the overall energy consumption induced by
each style by summing up the hosts’ energy costs. We then
measured the actual amount of energy consumed by the
implemented system, again using the digital multimeter setup
described in Section 3.2. We varied the frequencies and sizes
of data exchanges and component interactions stochastically.

For the sensor application, the framework suggested that
the pub-sub style would be significantly more energy efficient
than the client-server style. As shown in Figure 6, the energy
consumption estimates of the framework fell within 7% of the
measured energy costs for both styles. Moreover, as our
framework predicted, the pub-sub style was much more
energy-efficient for this scenario because the energy cost
incurred by exchanging more data remotely in the client-server
style exceeds the energy overhead due to processing the
subscriptions and publications in the pub-sub style.

As shown in Figure 6, the energy consumption predictions
for the mobile sales application made by our framework were
also within 7% of the actual measured costs for both styles.
The framework also correctly predicted that the client-server

Figure 5. A distributed sensor application designed in 
client-server (left) and publish-subscribe (right) styles.
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style is more energy-efficient than the pub-sub style. The same
level of accuracy was observed on the other two applications.
The detailed data for all applications is given in [18].

5. RELATED WORK
Many approaches have focused on analyzing quality

attributes of software architectures (e.g., performance [4] and
availability [25]). Likewise, many studies of the characteristics
of architectural styles have been conducted (e.g., [13,19]).
However, none of these studies focus on energy consumption.

Numerous tools estimate the energy consumption of
embedded systems. Li [10] characterized the energy
consumption of the SGI IRIX 5.3 OS and provided models for
estimating its runtime energy dissipation. Similarly, Tan [23]
investigated the energy behavior of two widely used embedded
OSs, μC/OS [8] and Linux, and suggested quantitative macro-
models as energy estimators. Gurumurthi [5] proposed the
SoftWatt tool for estimating the energy use of both an
application and SGI IRIX 5.3 operating system. Sinha [22]
suggested a web-based tool, JouleTrack, for estimating the
energy cost of software running on StrongARM SA-1100 and
Hitachi SH-4 microprocessors. Flinn [3] developed
PowerScope to estimate the power usage of mobile
applications running on the NetBSD OS [15] by combining
hardware instrumentation to measure current levels with kernel
software support to perform statistical sampling of system
activities. Recently, Luo [11] suggested a model to estimate
the energy cost of user interaction with a mobile device. All
these tools focus on applications with concrete
implementations, and lack generally-applicable models.

Several studies [21,26] have characterized the energy
consumption of wireless interfaces on handheld devices. They
have shown that the energy used to exchange data over a
network is directly linear to the size of data. We leveraged
these results to define remote communication energy costs.

6. CONCLUSION
We presented a framework that facilitates early estimation

of the energy consumption induced by an architectural style on
a distributed software system. This capability enables an
engineer to employ energy cost predictions along with other
quality attributes in determining the most appropriate
architectural style for a given distributed application before the
implementation of the system. Our extensive evaluation of the
framework with respect to accuracy in a large number of
distributed application scenarios has shown an error bound of
at most 7% as compared to the actual energy cost.

7. REFERENCES
[1] L. M. Feeney, et al. Investigating the Energy Consumption of a 

Wireless Network Interface. IEEE INFOCOM, 2001.
[2] R. Fielding. Architectural Styles and the Design of Network-Based 

Software Architecture. Ph.D. Dissertation, UC-Irvine, June 2000.
[3] J. Flinn, et al. PowerScope: A Tool for Profiling the Energy Usage of 

Mobile Applications. Work. on Mobile Comp. Sys. and App., 1999.
[4] H. Grahn, et al. Some Initial Performance Characteristics of Three 

Architectural Styles. Int’l. Workshop on Soft. and Perf., 1998.
[5] S. Gurumurthi, et al. Using Complete Machine Simulation for 

Software Power Estimation. Int’l. Symposium on HPCA, 2002.
[6] Java RMI. http://java.sun.com/javase/technologies/core/basic/rmi/.
[7] JamVM 1.4.5. http://jamvm.sourceforge.net/, March, 2007.
[8] J.J.Labrosse.MicroC/OS-II:The Real-time Kernel.CMP Books, 2002.
[9] E. Lee. Embedded Software. Advances in Comp., Acad. Press, 2002.
[10] T. Li, and L. K. John. Run-time modeling and estimation of operating 

system power consumption. In Proc. of ACM SIGMETRICS, 2003.
[11] L. Luo. KLEM: A Method for Predicting User Interaction Time and 

System Energy Consumption during Application Design. ISWC2007.
[12] S. Malek, et al. A Style-Aware Architectural Middleware for 

Resource Constrained, Distributed Systems. IEEE Trans. on Software 
Engineering, Vol. 31, No. 3, 2005

[13] N. Mehta. Composing Style-Based Software Architectures From 
Architectural Primitives. Ph.D. Dissertation, USC, 2004.

[14] N. Mehta, et al. Towards a Taxonomy of Software Connectors. In 
Proc. of Int’l. Conf. on Soft. Eng., Limerick, Ireland, June, 2000.

[15] NetBSD Project. http://www.netbsd.org/, 2005.
[16] D. C. Schmidt, et al. TAO: A Pattern-Oriented Object Request 

Broker for Distributed Real-time and Embedded Systems. In IEEE 
Distributed Systems Online, vol. 3, no. 2, Feb. 2002.

[17] C. Seo, et al. A Framework for Estimating the Impact of a Distributed 
Software System's Architectural Style on its Energy Consumption. In 
Proc of WICSA 2008, Feb. 2008.

[18] C. Seo. Prediction of Energy Consumption Behavior in Component-
Based Distributed Systems. Ph.D. Dissertation, University of 
Southern California, May 2008.

[19] M. Shaw, et al. A Field Guide to Boxology: Classification of 
Architectural Styles for Software Systems. COMPSAC, 1997.

[20] M.Shaw. Software Architecture:Perspectives on Emerging Discipline.Prentice.
[21] H. Singh. Energy Consumption of TCP in Adhoc Networks. WirelessNets2004.
[22] A. Sinha, et al. JouleTrack - A Web Based Tool for Software Energy 

Profiling. In Proc. of Design Automation Conference, 2001.
[23] T. K. Tan, et. al. Energy macromodeling of embedded operating 

systems. ACM Trans. on Embedded Computing Systems, 2005.
[24] R. N. Taylor,  et al. A component- and message-based architectural 

style for GUI software. IEEE Trans. on Soft Eng, 22 (6), 1996.
[25] W. Wang, et al. Software Architectural Analysis - A Case Study. In 

Proc. of Int’l. Computer Soft. and Applications Conference, 1999.
[26] H. Zeng, et al. ECOSystem: Managing Energy as a First Class 

Operating System Resource. In ACM Int’l. Conf. on ASPLOS, 2002.

Figure 6. Framework’s accuracy for the 
distributed sensor application (left) and the mobile 

sales application (right). The values are in mJ.
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